
A method for calculating the extreme eigensolution of a real symmetric matrix of high order

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 2369

(http://iopscience.iop.org/0305-4470/13/7/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 2369-2374. Printed in Great Britain 
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Abstract. A simple method for calculating the extreme eigensolution of a real symmetric 
matrix of high order, alternative to Davidson’s method, is investigated and compared with 
other similar methods. 

1. Introduction 

In shell model calculations on atoms large sparse real symmetric matrices are produced 
and their lowest lying or highest lying eigenvalue and the corresponding eigenvector are 
required. 

Davidson (1975) introduced a method which is based on restricting the matrix A 
( n  X n) to a p-dimensional subspace U and approximating its eigenvalues and the 
corresponding eigenvectors by solving the eigenproblem for the matrix A,  = U:A U, 
of order p x p ,  where U, = ( b l ,  . . . , b,) is an n x p  orthonormal matrix with columns 
consisting of the vectors derived in the course of the process. 

In the present work we propose a method for the calculation of the extreme 
eigenvalues and their eigenvectors which restricts the basis vectors bi to a two- 
dimensional subspace. The method can be considered as the restriction of Davidson’s 
method to a two-dimensional subspace. In some respects the present method reduces 
to the minimum all the numerical and computational difficulties of the original 
Davidson method. 

One part of Davidson’s method which takes a considerable amount of the compu- 
tational time and extra storage is the orthogonalisation process of the basis vectors bi, 
i = 1, . . . , p .  These vectors, as well as the vectors Abi, are kept in auxiliary store in order 
to reduce the computational effort in the following steps. The transfer times from and 
to the main memory, however, occupy a large part of the computer time. 

In every iteration we have to orthogonalise the pth basis vector with respect to the 
( p  - 1) foregoing ones. But because of the round-off errors introduced, by cancellation 
in the subtraction step of the Gram-Schmidt process, the method may break down 
(Kalamboukis 1979) and it may be necessary to reorthogonalise these vectors. Another 
step of Davidson’s method which takes considerable time is the solution of the 
eigenproblem for the matrix A,, of order p x p ,  in every iteration. 

The present method is easy to program and overcomes all the disadvantages 
mentioned. The small amount of computation which it requires per iteration and the 
fact that no vectors need to be kept in auxiliary store make it much faster than 
Davidson’s algorithm. 
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The method is similar to the coordinate relaxation method (Faddeev and Fadeeva 
1963, Schwarz 1974), which also uses a two-vector subspace, apart from the fact that in 
the present method all the components of the trial vector are changed simultaneously. 
The convergence rate of the algorithm has been speeded up considerably, in analogy to 
successive over-relaxation applied to the coordinate relaxation method, by a systematic 
under-relaxation. In this way we achieved a great improvement of the convergence rate 
for values of the relaxation parameter w in (0, 1). Indeed from our numerical examples 
we see that for a suitable value of w we have reduced the number of iterations by half. In 
spite of the lack of a theoretical estimate of the optimal value for w,  we shall report some 
numerical examples which show the convergence rate of the algorithm as a function of 
the relaxation parameter. 

A similar method based on restricting the Lanczos method (Lanczos 1950) to a 
two-dimensional subspace but without using the under-relaxation technique is pro- 
posed by Berger et al (1977). 

The present method has been compared (Kalamboukis 1979) with the coordinate 
relaxation method and is found to be much faster in the case of diagonally dominant 
matrices with closely spaced eigenvalues. 

Deflation (Shavitt eta1 1973) has been applied with this method to find some of the 
interior eigenvalues near the end of the spectrum. 

In the following sections we describe our algorithm in more detail and present a 
proof of the convergence. Finally several numerical results are presented to illustrate 
how the method works in practice. 

2. Description of the method 

Consider the eigenvalue problem 

A x  = A x  (2.1) 

where A is a real symmetric matrix of high order. Let Ai denote the eigenvalues of (2.1) 
numbered in ascending order: 

A 1 < A 2 < .  . .<A, , .  

In the following we shall restrict the problem to finding only the lowest ( A l )  or the 
highest (A,,) eigenvalue and the corresponding eigenvector. 

Let p be the index i for which aii, i = 1, . . . , n, takes its minimum value. To start the 
algorithm, if no good approximation of the required eigenvector is available, we take as 
starting vector bl the unit vector e ,  with one in the p th  position and zero elsewhere. 
Then we find a new vector b2=Abl-Abl  (A = bTAbl) ,  and the 2 x 2  generalised 
eigenvalue problem 

a y  = A &  (2.2) 

is solved, where iii = b f A b i  and hj = b f b j ,  i, j = 1,2.  In theory b2 is orthogonal to bl 
and when b2 is normalised g is the 2 X 2 unit matrix. However, in practice b2 is not 
exactly orthogonal to b l ;  the introduction of g into (2.2) is a way of avoiding the 
orthogonalisation of b2 to bl which would otherwise be necessary. The lowest eigen- 
value of (2.2), that is the smallest root of the quadratic equation 

(2.3) -2 2 (1 - b 1 2 )  - (a'll + 6 2 2  -2a'12612) + (a ' l la"22 4 2 )  = 0, 
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is taken as a new approximation of A and a linear combination of the vectors bl, bz,  
namely 

Ylbl + Y262, 

is taken as a new starting vector and is used to generate a subsequent 2 X 2 generalised 
eigenproblem. The process continues until the lowest eigenvalue and the correspond- 
ing eigenvector have converged. The scalars y 1 ,  yz are the two components of the 
eigenvector belonging to the lowest eigenvalue of the system (2.2). For the calculation 
of (yl ,  yz) we have assumed y1= 1 and thus 

(2.4) y 2  = (d12 - A & ~ ) / ( A  - M. 
The process may be summarised in the following simple algorithm?. 

Initialisation: Choice of the starting vector bl 
Calculate b2 = Abl - Abl and normalise 

Iteration: While llb211> E or ly21 > E do 
(a) FormAb2 
(b) Form the interaction matrices A, l? and solve the generalised eigen- 

value problem A y  = Al?y.  Select A, y = ( y l ,  y z )  
(4 b1:= Ylb l+  Y2b2, llb1ll= 1 
(4 Ab1 := yi(Abi) + yz(Ab2) (2.5) 
(e) Form b2 = Abl -Abl, llb211 = 1. 

To accelerate the convergence rate of the algorithm described, we shall incorporate the 
relaxation factor by multiplying (2.4) by w E (0, 1) in step (b) of the iteration. 

where k denotes the iteration number, 
can be computed recursively so that each step requires essentially the computation of 
the matrix vector multiplication Ab$k’ (step (a)). 

For diagonally dominant matrices with off -diagonal elements small compared to the 
separations of the diagonal elements (maxipi laij/(aii - ajj)l < 0.01) we can use David- 
son’s perturbation correction in estimating the vector b2 to accelerate the convergence, 
i.e. 

From (2.5) we see that the vector 

bz+ b 2 / ( A  -ai;). (2.6) 
The successive values of A ( k )  as k + 00 form a monotonically decreasing sequence 

and since this is a sequence of Rayleigh quotients it is bounded below by the lowest 
eigenvalue and therefore is convergent (see Appendix). In practice it does converge to 
the lowest eigenvalue. It follows that the off-diagonal elements of A, l? tend to zero. 
Also yik)  + 0 as k +a, so Iy$”\ can be used as a measurement for the accuracy of the 
eigenvectors of A.  

To find some of the interior eigenvalues near the end of the spectrum the deflation 
method (Shavitt et a1 1973) has been applied with the present method to a modified 
matrix which possesses A k  as the lowest eigenvalue. If (k - 1) eigenvalues and the 
corresponding eigenvectors are known, then 

t An alternative way would be to orthogonalise the vectofs bl, b2 by the Gram-Schmidt process and replace 
(2 .2)  with the solution of the 2 X 2 single eigenproblem Ax = Ax, where A is as in (2.2). 
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where x i  are orthonormal eigenvectors of A and 4i are suitably chosen scalars, 
possesses hk as the lowest eigenvalue. The quantities involving the matrix Ak in the 
algorithm are the matrix vector multiplication and the formation of matrix A. These 
calculations, however, can be formed in an easy manner without forming explicitly the 
matrix Ak. 

If instead of the lowest eigenvalue of the 2 X 2 generalised eigenproblem (2.2) we 
take in every iteration the highest one, then we have convergence to the highest 
eigenvalue of A .  

3. Numerical results and conclusions 

In this section we shall describe a few examples to illustrate the utility of the present 
method. 

Example 1. In this example three Hamiltonian matrices have been tested, one for 
Ne, of order 640, a slightly different one for 20Ne, also of order 640, with single 

particle energies equal to zero, and for 23Na, of order 876. These matrices were tested 
for different values of the relaxation parameter w.  In figure 1 we give a demonstration 
of the convergence of the method as a function of W .  For a comparison with Davidson’s 
method, the present method for 23Na converged after 104 iterations with o = 0.87 and 
l y2 /  = 0.7 x lo-’. The CPU time was 13 min in an IBM 370/145 computer. Davidson’s 
method converged after 54 iterations with 11q11= 0.5 x lop7. The CPU time for David- 
son’s procedure was 78min. These CPU times were obtained without attempted 
programming optimisation, 

20 

I 

0 0 2  0 6  1 1 L  1 0  
W 

Figure 1. The convergence rate of the present 
algorithm as a function of the relaxation parameter 
w. Continuous line represents *‘Ne, broken line 
*‘Ne with single particle energies 0 and dotted iine 
23Na. 

Number of iterations 

Figure 2. Convergence diagram for example 2. 
Curve (1) represents Davidson’s method, (2) the 
present method with w = 0.9 and (3) with w = 1.0. 
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Example 2. A 600 x 600 random symmetric matrix was treated. In figure 2 we 
illustrate the convergence diagram for Davidson’s method (curve l ) ,  the present 
method with w = 0.9 (2)  and with w = 1 ( 3 ) .  

Example 3. A 100 x 100 diagonally dominant matrix with close-together diagonal 
elements was constructed (Kalamboukis 1979) for a comparison of the present method 
with the coordinate relaxation method. The matrix was tested several times, varying 
the dominance of the diagonal elements. From these tests, the coordinate relaxation 
method is faster for general matrices (table 1 ,  large values of d )  while for diagonally 
dominant matrices (d < 0.01) the present method is superior using Davidson’s pertur- 
bation correction (2.6),  the purpose of which is to accelerate the convergence (Kalam- 
boukis 1979). (In table 1 the last three entries have been obtained using (2 .6) . )  

For the cases with diagonally dominant matrices the present method compares 
favourably with Davidson’s method (Kalamboukis 1979). 

Table 1. Comparison of the present method with coordinate relaxation for different values 
of d = maxi,i laii/(aii - aii)l. 

d 
Present method 

(woptimum0.85) 

Coordinate relaxation 
(uoptimum 1.2) 

Iterations I Y Z l  Iterations l Y z l  

1 .o 28 0.5 x 1 0 - ~  14 0.3 X 

0.1 34 0.7 x 17 0.5 x lo-’ 
0.01 55 0.9 x 15 0.4 x lo-@ 
0.001 11 0.8 x 175 0.5 x 

0~00001 3 0.4 x io-’ 181 0.9 X 10’ 
0*0001 5 0.5 x lo-’ 181 0.3 x 1 0 - ~  

From these examples we see that the present method might take more iterations 
sometimes than Davidson’s method, but still be much faster, since the amount of work 
involved per iteration is much less than that of Davidson’s method. This is apparent 
from example ( 1 )  for 23Na, comparing the CPU times. Also we do not have to keep any 
vectors in auxiliary store and transfer them to the main memory, which saves a lot of 
computational time, and the sparseness of the matrix is fully taken into account. The 
matrix is represented in a matrix-vector multiplication form in a subroutine so zeros do 
not appear in the multiplication. 

From all our numerical examples and other examples tested we have noted that for 
values of w E (0*8 ,0*9)  the convergence rate is considerably increased, so a single value 
of w such as 0.85 would work well in all the cases. The computational work compares 
very favourably with the other methods we have discussed. The total number of 
multiplications per iteration is ( z  + 12)n, where z is the average number of non-zero 
elements per row of the matrix A. The algorithm can easily be extended to the 
generalised eigenvalue problem. 

In conclusion, the simplicity of programming, the small amount of work per 
iteration and the good convergence rate for near-degenerate eigenvalues are the main 
factors in favour of the present method for finding the extreme eigenvalues and their 
eigenvectors of large sparse real symmetric matrices. 
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Appendix 

It is easy to show that the vectors bi, i = 1,2 ,  are theoretically orthogonal. So the matrix 
B’ should be the unit matrix. Suppose that at the kth iteration we have 

b(k+l) = y 1  ( k )  bl  ( k )  +y ik’b ik’  = l f k ’ y  
1 

where U‘k’ = (bik), bkk’). Then 

(AI) ~\:+1) = y*A(k)y = A ? )  
and A \k) = A + t l  where A is the exact lowest eigenvalue of A. In the following we shall 
determine the matrix and hence A iktl). Suppose that 

where x,  are the exact eigenvectors, llxrll = 1, and c 2 +  Z e?  = 1. From (Al)  and (A2) it 
follows that t l  = Z e t  (A, - A  l). 

- A  lI 
and hence to find y directly. Some straightforward algebra shows that 

To find A (Ikt1) = A + y, say, it will be convenient to use the matrix C = 

c11 = tl, c12 = s, 

where s = t2 - t: and t k  = c e? (A, - 

y = r1 - t i / t 3  + o ( ~ ~ ) .  

c 2 2  = ( l / s 2 ) ( t 3  - t1t2)- t l  

So y will be the lowest eigenvalue of C, 

Hence 0 < y < t l  and therefore A i k + l )  < A i k ) ,  which proves the argument of § 2 that the 
sequence of A ik) as k + 00 is convergent. 

It is clear that A I  is the value to which the A ik) converges, for convergence implies 
that t i l t 3  = 0, and hence that the error is zero, t l  = 0 and finally y = 0. Although we 
have assumed that A l  is the lowest eigenvalue, the argument could apply to any 
eigenvalue. In practice, however, as with the other methods which seek a stationary 
value of the Rayleigh quotient, it is the extreme eigenvalue which is reached. In any 
case, we attempt to start the process with an estimate as close to that value as possible. 
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